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In our previous study of hydrodynamic Lyapunov modes �HLMs� in coupled map lattices, we found that
there are two classes of systems with different �-k dispersion relations. For coupled circle maps we found the
quadratic dispersion relations ��k2 and ��k for coupled standard maps. Here, we carry out further numerical
experiments to investigate the dynamic Lyapunov vector �LV� structure factor which can provide additional
information on the Lyapunov vector dynamics. The dynamic LV structure factor of coupled circle maps is
found to have a single peak at �=0 and can be well approximated by a single Lorentzian curve. This implies
that the hydrodynamic Lyapunov modes in coupled circle maps are nonpropagating and show only diffusive
motion. In contrast, the dynamic LV structure factor of coupled standard maps possesses two visible sharp
peaks located symmetrically at ±�u. The spectrum can be well approximated by the superposition of three
Lorentzian curves centered at �=0 and ±�u, respectively. In addition, the �-k dispersion relation takes the
form �u=cuk for k→2� /L. These facts suggest that the hydrodynamic Lyapunov modes in coupled standard
maps are propagating. The HLMs in the two classes of systems are shown to have different dynamical behavior
besides their difference in spatial structure. Moreover, our simulations demonstrate that adding damping to
coupled standard maps turns the propagating modes into diffusive ones alongside a change of the �-k disper-
sion relation from ��k to ��k2. In cases of weak damping, there is a crossover in the dynamic LV structure
factors; i.e., the spectra with smaller k are akin to those of coupled circle maps while the spectra with larger k
are similar to those of coupled standard maps.
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I. INTRODUCTION

In a recent paper we have reported our results of numeri-
cal experiments on hydrodynamic Lyapunov modes �HLMs�
in coupled map lattices �CML’s� �1�. Here, hydrodynamic
Lyapunov modes are the collective tangent-space perturba-
tions associated with the smallest Lyapunov exponents of a
high-dimensional dynamical system. They were originally
found by Posch and Hirschl in molecular-dynamics simula-
tions of hard-ball systems �see �2��. Due to its potential im-
portance in understanding fundamental problems of statisti-
cal mechanics from the point view of nonlinear dynamics
�3–8�, great interest among many research groups has been
triggered by this new finding and a large amount of work has
been performed both numerically and analytically in order to
gain a deep understanding of the nature of HLMs �9–16�.
Numerical simulations were carried out mainly for hard-ball
systems in two- and three-dimensional space �2,9,13�. Theo-
retical attempts to understand the mechanism of HLMs in-
clude the random matrix approximation method of Eckmann
and Gat �10�, the generalized hydrodynamics theory by Mc-
Namara and Mareschal �11�, and the perturbative analysis in
terms of Goldstone modes by de Wijn and van Beijeren �12�.
The existence of HLMs in systems with a soft-potential in-
teraction was recently reported for Lennard-Jones and WCA
fluids �15,17�. Although lots of work has been performed
already, a thorough understanding of this problem has not yet
been achieved. Therefore further numerical experiments

need to be carried out to accumulate more information on
HLMs.

In Ref. �1� we reported results on Lyapunov instabilities
of coupled map lattices �18–20�. Although the CMLs under
investigation are not directly related to many-particle sys-
tems, they do bear similar symmetries, which are believed to
be crucial for HLMs. Due to the simplicity of their model
dynamics and the ease of numerical simulations, CMLs are
ideal for the study of HLMs. Our discovery of HLMs in
CMLs suggests that the existence of HLMs is not restricted
to many-particle systems and seems to be a common feature
of a large class of spatially extended systems. This greatly
enlarges the regime where HLMs are expected. Moreover, a
Hamiltonian structure is shown not to be a necessary condi-
tion for the appearance of HLMs. One important finding is
that CMLs belong to two universality classes with respect to
the nature of HLMs. The �-k dispersion relation extracted
from static Lyapunov vector �LV� structure factors is charac-
terized by ��k for Hamiltonian systems while it takes the
form ��k2 for dissipative cases. Furthermore, we performed
extensive numerical experiments to explore the conditions
under which HLMs are expected. The role of conservation
laws and symmetries, damping, and on-site potentials was
elaborated. The static correlation functions of Lyapunov vec-
tors are the main focus of these studies. Although these quan-
tities are capable of characterizing the spatial structure of
LVs quite well and of identifying the existence of HLMs
unambiguously, there is a complete lack of information on
the dynamical behavior of the modes �16�.

In this paper, the recently introduced dynamic LV struc-
ture factor, which can provide detailed information on the
dynamics �especially the coherent movements� of HLMs
�16�, is adopted to investigate HLMs in CMLs. Our aim is to
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identify the form of the dynamic LV structure factor and to
figure out the difference in LV dynamics between the two
classes of systems classified according to the �-k dispersion
relation in our previous study. Additionally, we are interested
in seeing how the damping added in a Hamiltonian system
influences the LV dynamics, since the asymptotic �-k disper-
sion relation for coupled standard maps under damping was
found to be akin to that of coupled circle maps.

The rest of this paper is organized in the following way:
The model systems under investigation will be given in Sec.
II. In Sec. III we will briefly recall the correlation function
theory of Lyapunov vectors. In Sec. IV, the intermittent time
evolution of the instantaneous static LV structure factors will
be demonstrated. Section V is the main part of this paper, in
which we will present numerical results for the dynamic LV
structure factors of the two models and fit the spectra with
properly chosen functions. The fitting parameters obtained
will also be analyzed. The effect of damping will also be
discussed in this section. Finally, we will list the main results
obtained and end this article with a short discussion.

II. MODELS

In this paper, two basic model systems are used to inves-
tigate the dynamics of HLMs. The first one is a lattice of
standard maps with forcelike coupling �22�,

vt+1
l = �1 − �t

l�vt
l + ��f�ut

l+1 − ut
l� − f�ut

l − ut
l−1�� , �1a�

ut+1
l = ut

l + vt+1
l , �1b�

where f�z�= �1/2��sin�2�z�, t is the index of the time step,
l= �1,2 , . . . ,L� is the index of lattice site, and L is the system
size. The second model is a lattice of circle maps with force-
like coupling,

ut+1
l = ut

l + ��f�ut
l+1 − ut

l� − f�ut
l − ut

l−1�� . �2�

Here, f�z�= �1/2��sin�2�z� and t, l, and L have the same
meaning as in Eq. �1�.

We set �t
l=0 for the time being and use periodic boundary

conditions unless otherwise stated.
Note that the quantities P=�lvt

l for coupled standard
maps, Eqs. �1�, and Q=�lut

l for coupled circle maps, Eq. �2�,
are conserved during iterations of the system dynamics and
both systems are invariant with respect to an arbitrary trans-
lation in the u direction.

An essential difference between the two systems is that
the model of coupled standard maps is a Hamiltonian system
preserving the phase volume while coupled circle maps are
dissipative with the phase volume contracting constantly as
time proceeds. Our previous results indicated that the two
systems belong to different universality classes with respect
to the �-k dispersion relation of HLMs �1�. Now, we will
turn to the dynamical behavior of HLMs in the two systems.

III. CORRELATION FUNCTIONS OF LYAPUNOV
VECTORS

In order to facilitate the reading of this paper, we briefly
repeat the correlation function theory of Lyapunov vectors in
this section. Details can be found in �15,16�.

In the spirit of the correlation function theory in molecu-
lar hydrodynamics �21�, we define a dynamical variable
named LV fluctuation density as

U����r,t� = �
l=1

L

	ut
���l	�r − rl� , �3�

where rl	 la is the position coordinate of the lth element of
CML’s and �	ut

���l� is the u part of the �th Lyapunov vector.
A space- and time-dependent autocorrelation of LV fluctua-
tion density is defined as

Gu
�����r,t� = 
U����r,t�U����0,0�� , �4�

where 
¯� means the time and ensemble average. The so-
called static LV structure factor is the Fourier transformation
of the equal-time correlation function Gu

�����r ,0�,

Su
�����k� =� Gu

�����r,0�e−ikrdr

= �
l=1

N

Gu
�����la,0�e−ikla

= 
Uk
����t�U−k

����t��

= 
su
�����k,t�� , �5�

with

Uk
����t� =� U����r,t�e−ikrdr = �

l=1

L

	ut
���le−ikrl �6�

being the spatial Fourier transformation of U����r , t� and

su
�����k,t� = Uk

����t�U−k
����t� �7�

being the instantaneous static LV structure factor. From Eq.
�5� we learn that the static LV structure factor is nothing but
the spatial power spectrum of the LV fluctuation density
U����r , t�. In Eq. �7�, we introduce an instantaneous quantity
su

�����k , t�, which will be used alongside the dynamic struc-
ture factor to study the LV dynamics.

Note that the spatial Fourier transformation is taken with
regard to the discrete lattice space, not the state space of
CML’s.

The dynamic LV structure factor is defined as

Su
�����k,�� =� dtei�t� Gu

�����r,t�eikrdr

=� 
Uk
����t�U−k

����0��ei�tdt , �8�

which contains detailed information on the LV dynamics.
For the simplicity of calculations, we take the lattice con-

stant a=1 throughout the rest of the paper.

IV. INTERMITTENCY IN THE TIME EVOLUTION
OF LYAPUNOV VECTORS

In this section, we consider the time evolution of the in-
stantaneous quantity su

�����k , t�, which is the spatial power
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spectrum of LV fluctuation density at the moment t. We will
first demonstrate what happens in coupled standard maps
before we turn to coupled circle maps.

A. Coupled standard maps

In Fig. 1, two typical snapshots of the profile U����r , t� and
the corresponding spatial power spectra su

�����k , t� for
Lyapunov vector No. 116 of coupled standard maps are pre-
sented. Note that, for the used system size L=128, there exist
2L=256 Lyapunov vectors and that, due to the standard or-
dering, LV No. 116 lies near the center of the Lyapunov
spectrum–i.e., in a regime where hydrodynamic Lyapunov
modes exist �1�. The LV profile at t=153 is roughly a plane
wave, and there is a sharp peak in its spatial power spectrum
su

�����k , t�. The wave number k* of the sharp peak is compa-
rable with 2� /L, the smallest nontrivial wave number per-
mitted by the periodic boundary conditions used. In contrast,
the LV profile at t=215 is rather noisy and no long-
wavelength structure is visible. The corresponding spatial
Fourier spectrum is nearly uniform, and there is no sharp
peak as in the case t=153. From these results we see that the
time evolution of Lyapunov vectors is not stationary and the
structure of Lyapunov vectors varies erratically with time.
The investigations mentioned above also show that the in-
stantaneous quantity su

�����k� is quite sensitive to the struc-
tural changes of LVs and is a suitable measure for the char-
acterization of such changes.

For a qualitative characterization of the changes in
su

�����k , t�, we employ the quantity called spectral entropy
�23�, which reads

Hs�t� = −� su
�����k,t�ln�su

�����k,t��dk . �9�

The time evolution of the wave number k* and the spectral
entropy Hs�t� is shown in Fig. 2. Here, k* is defined as the
wave number where the measure su

�����k , t� attains its maxi-

mal value. The intermittent behavior of both quantities dem-
onstrates clearly that the time evolution of Lyapunov vectors
in coupled standard maps, Eq. �1�, is not stationary. The dy-
namic LV structure factor may be used to further clarify
whether this is due to a coherent movement or random fluc-
tuations.

B. Coupled circle maps

Snapshots of typical profiles of LV No. 156 of coupled
circle maps are shown in Fig. 3. The time evolution of the
peak wave number k* and the spectral entropy Hs�t� is pre-
sented in Fig. 4, where similar intermittent behavior as in
coupled standard maps is observed. These facts indicate that
the LV dynamics of coupled circle maps, Eq. �2�, is also
nonstationary.

V. DYNAMIC LV STRUCTURE FACTORS

In this section, we will consider the dynamic LV structure
factor of the two CMLs. The use of this quantity enables us

FIG. 1. �Color online� Two snapshots of the instantaneous pro-
file of LV No. 116 �upper row� and the corresponding spatial power
spectra su

�����k , t� �lower row� for coupled standard maps with �
=1.3. The system size L=128 is set for all figures concerning the
coupled standard maps unless otherwise stated.

FIG. 2. �Color online� Intermittent time evolution of the peak
wave number k* �upper panel� and the spectral entropy Hs�t� �lower
panel� of coupled standard maps with �=1.3.

FIG. 3. Two snapshots of the instantaneous profile of LV
No. 156 �upper row� and the corresponding spatial power spectra
su

�����k , t� �lower row� for coupled circle maps, Eq. �2�, with �
=1.3. The system size L=256 is set for all figures concerning the
coupled circle maps unless otherwise stated. The zero-value
Lyapunov exponent is at �=164.
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to detect possible coherent movements of HLMs and to
clarify the origin of the intermittency observed in Sec. IV. In
addition, the information about the form of dynamic LV
structure factors gained through numerical experiments may
serve as a basis for a future theoretical understanding of the
underlying mechanism.

A. Coupled circle maps

The dynamic LV structure factors Su
�����k ,�� of LV No.

163 of coupled circle maps, Eq. �2�, are presented in Fig. 5.
All the curves shown with various wave numbers share a
common feature: namely, the existence of a peak at �=0. In
addition, no other peaks are visible beside the one just men-
tioned. The peak is rather significant for k�2� /L. As the
wave number increases, so does the width of the peak while
the hight decreases gradually.

In Fig. 6, the dynamic LV structure factors Su
�����k ,�� are

approximated with the Lorentzian spectrum:

Su
�����k,�� = a0

a1

�2 + a1
2 , �10�

where the fitting parameters a0 and a1 are generally functions
of the wave number k and may also have dependence on

Lyapunov vectors. In the figure one can see that the numeri-
cal data agree quite well with the curves from Eq. �10�.

In Fig. 7, the variation of the fitting parameter a1 with
changing wave number k is shown. Here, parameters for sev-
eral cases with different LVs and coupling strengths � are
plotted together in the same figure. The gradual ascent of a0
with k is found to be parabolic—i.e., a1c1k2. The values of
a1 have almost no dependence on Lyapunov vectors while
the variation of the coupling strength � does lead to a change
in a1. However, the parabolic dependence of a1 on k is a
common feature of all cases investigated. Remember that the
�-k dispersion relation of coupled circle maps is character-
ized by ��k2 �1�. It is not clear whether the identical k
dependence is a coincidence or implies some deep connec-
tion between them.

In Fig. 8, values of the fitting parameter a0 are plotted
with the wave number k. The corresponding static LV struc-
ture factors Su

�����k� are represented in the same figure. For
the three example cases with �=163, 162, and 159, respec-
tively, there is an excellent agreement between the curves of
Su

�����k� /� and the symbols for a0—i.e., a0= �1/��Su
�����k�.

Actually, this is what one expects from the general relation
Su

�����k�=�d�Su
�����k ,�� and a dependence as in Eq. �10�.

The perfect agreement shown in Fig. 8 demonstrates that the
Lorentzian approximation in Eq. �10� works quite well for
the dynamic LV structure factors of coupled circle maps.

Based on our studies of the fitting parameters, we come
to the conclusion that the dynamic LV structure factor
Su

�����k ,�� of coupled circle maps takes the form

FIG. 4. �Color online� Intermittent time evolution of the peak
wave number k* �upper panel� and the spectral entropy Hs�t� �lower
panel� of coupled circle maps, Eq. �2�, with �=1.3.

FIG. 5. �Color online� Dynamic LV structure factors
Su

�����k ,�� of LV No. 163 of coupled circle maps, Eq. �2�, with �
=1.3. The peak at �=0 becomes weaker as the wave number k
increases.

FIG. 6. �Color online� Approximations of the dynamic LV struc-
ture factors Su

�����k ,�� with the Lorentzian curve �see Eq. �10��.
Here the results of LV No. 163 of coupled circle maps are shown
with a representation of only the positive � part of Su

�����k ,��.

FIG. 7. �Color online� The fitting parameter a1 vs the wave
number k for several cases with various � and �. A straight line with
the slope 2.0 is plotted to show the parabolic dependence of a1 on k.

H.-L. YANG AND G. RADONS PHYSICAL REVIEW E 73, 016208 �2006�

016208-4



Su
�����k,�� =

1

�
Su

�����k�
c1k2

�2 + c1
2k4 , �11�

where Su
�����k� is the static LV structure factor and c1 is a

k-independent constant.
Equation �11� represents a single Lorentzian spectrum

centered at �=0, with the half-height width 2c1k2. A spec-
trum of this form is typical of a diffusive process in
U����r , t� described by the equation

dU����r,t�
dt

= D�r
2U����r,t� , �12�

where �r means the spatial derivative with regard to the
discrete lattice space and the diffusion constant D=c1.

Now it becomes clear that the intermittency shown in Fig.
4 is a result of the diffusive motion of LVs.

B. Coupled standard maps

We will now turn to coupled standard maps. Figure 9
shows the dynamic LV structure factors Su

�����k ,�� of LV
No. 126. In contrast to coupled circle maps, the spectrum
Su

�����k ,�� possesses two sharp peaks at �= ±�u, respec-
tively. With the wave number k increasing, the two peaks
tend to separate further; i.e., �u becomes larger. At the same
time, the peak widths broaden and the peak heights decrease.
The dynamic LV structure factors Sv

�����k ,�� for the v com-
ponent of the same LV are presented in the lower panel of

Fig. 9. They are similar to Su
�����k ,��.

In Fig. 10, numerical data of Su
�����k ,�� are approximated

with the superposition of three Lorentzian spectra centered at
�=0 and ±�u, respectively—i.e. with

FIG. 8. k dependence of the fitting parameter a0 of the LV Nos.
159, 162, and 163 �from top to bottom� of coupled circle maps with
�=1.3. The corresponding static structure factors are shown in the
same plot, respectively. The agreement between curves and symbols
implies a linear relation a0�1/��Su

�����k�.

FIG. 9. �Color online� Dynamic LV structure factors of LV No.
126 of coupled standard maps with �=0.6. The upper panel shows
those for the u component of LVs and the lower panel depicts those
for the v component. A distinct feature of the spectra is the exis-
tence of two sharp peaks centering symmetrically at �= ±�u.

FIG. 10. �Color online� three- and two-pole approximations of
the dynamic LV structure factor Su

�����k ,�� of LV No. 126 of
coupled standard maps with �=0.6 and k=2� /L. Obviously the
three-pole fit is better than the two-pole fit although the central peak
of the three-pole fit is quite weak and flat.
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Su
�����k,�� = a0

a1

�2 + a1
2 + a2

a3

�� + �u�2 + a3
2

+ a2
a3

�� − �u�2 + a3
2 , �13�

where the fitting parameters ai and �u may have dependence
on the wave number k and the LV being used. From Fig. 10
one can see that the three-pole approximation works fairly
well. The estimated central peak at �=0 is quite flat com-
pared to the two side peaks at �= ±�u. We have tried to fit
the data with a two-pole spectrum without the central peak.
As shown in the figure, the result is much worse than the

three-pole fitting, especially for the large-� regime. There-
fore, the three-pole approximation for the dynamic LV struc-
ture factors Su

�����k ,�� is more suitable than the two-pole
fitting, although there are only two visible peaks in the spec-
tra.

The k dependences of the fitting parameters taken from
the three-pole approximations of five LVs of coupled stan-
dard maps with �=0.6 are presented in Fig. 11. Remember
that since the estimated central peak at �=0 is rather weak,
the fitting parameters a0 and a1 are less accurate and less
reliable than the parameters of the side peaks. Below, we will
explore the fitting parameters one by one.

We will begin with a3 which is the half-height width of
the side peaks. The collapse of data for different LVs on a
single curve implies that this quantity does not depend on
LVs, or at least the dependence is too weak to be detected.
The ascent of a3 with increasing k can be well approximated
with a linear function a3c3k with c3=0.0306.

The finite widths of the side peaks mean that the coherent
motion represented by these peaks is of finite lifetime. The k
dependence of a3 reflects that each of the Fourier compo-
nents has its own lifetime.

The value of �u increases gradually with raising k. The
scattering of data especially for the large-k regime implies
the dependence of �u on LVs. Numerical fitting of data to a
linear function �u=�u0+cuk yields −0.001
�u0
−0.0006
and 0.053
cu
0.063. To further investigate the depen-
dence of the velocitylike quantity cu on LVs, it is plotted
against � in Fig. 12. As can be seen, the dependence is rather
weak.

The existence of shifting side peaks in the spectra
Su

�����k ,�� implies that the LVs of coupled standard maps
possess some coherent movements. In other words, the
HLMs in this system are propagating.

In Fig. 13, some profiles of the dynamic LV structure
factors Su

�����k ,�� of LV No. 163 with wave numbers k larger
than those shown in Fig. 9 are presented. Although there are
still two visible peaks in each spectrum, as in the cases with
lower wave numbers, we failed to approximate them well
with the three-pole spectrum of Eq. �13�. The dependence of
�u on k is represented in the lower panel of Fig. 13. With
increasing k, the curve deviates gradually from the linear
relation �u=cuk, which fits the data in the regime k�0 quite
well. And the curve levels off eventually at k�120� /L.
Since it is impossible to perform the three-pole fitting for the
large-k cases, positions of the maximum in the spectra are
used instead.

FIG. 11. �Color online� The fitting parameters of the three-pole
approximations of dynamic structure factors of five LVs of coupled
standard maps with �=0.6.

FIG. 12. �Color online� The velocity cu vs the index � of LVs.
The slow increase of cu with � from 118 to 126 reflects the weak
dependence of cu on LVs.
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The k dependence of a2, the weight of the side peak, is
shown in Fig. 11. It reminds us of the static LV structure
factors of the corresponding LVs. In Fig. 14 the plots of a2
are overlaid with those of the static LV structure factors
Su

�����k�. For the case �=122, the symbols for a2 follow the
curve of the static LV structure factor quite closely. This
agreement gives the relation a2=c2Su

�����k� with c2=0.375�.
Motivated by the intuitive expectation that the central

peak here should represent the same dynamics as in coupled
circle maps, it is natural to anticipate a linear relation be-

tween a0 and the static LV structure factor. Therefore, we
plot a0 together with a2 in Fig. 14. For the case �=122, a0
is larger than a2 but follows the general trend of a2 for
k�4� /L. For k=2� /L and 4� /L, the side peaks at �
= ±�u are so sharp that they prevent an accurate estimation
of the parameters a0 and a1 for the central peak. If we ignore
the part with k�4� /L, it is reasonable to say that a0

=c0Su
�����k� with a constant c0 different from c2. The situa-

tion is more evident for the case �=118 where we assign
a0=a2 for the numerical fitting and the estimated parameters
show confidently that a0=a2=c2Su

�����k� with c2=� /3. These
numerical experiments suggest a plausible conjecture that
both a0 and a2 are proportional to the static LV structure
factor Su

�����k�. The ratio of the two prefactors c0 and c2,
however, depends on the LVs used. In Fig. 15, the ratio a2 /a0
is plotted with k for three LVs. Obviously, for each LV the
ratio is nearly constant for k�6� /L and it takes different
values for different LVs. This result is consistent with our
above conjecture.

The width a1 of the central peak shown in Fig. 11 is much
broader than a3, the width of side peaks. This means the
central peak is much flatter than the side peaks. Data of a1
are also more noisy and have much stronger dependence on
� than a3. In spite of this, the values of a1 for all LVs con-
sidered show the general tendency to ascend with increasing
k. To make the k dependence more obvious, in Fig. 16 we
show the log-log plot of a1 against k. For the same reason
stated above, the values of a1 with k=2� /L are ignored. The
scattering of data is more obvious than in the linear plot.
Numerical fitting of the data to a power-law function a1
=c1k yields 1.0.

After performing individual investigations of each fitting
parameter, we will now attempt to bring all components to-
gether and arrive at the estimated form of the dynamic LV
structure factor of coupled standard maps. It reads

FIG. 13. �Color online� Dynamic LV structure factors Su
����

��k ,�� of LV No. 126 with several larger wave numbers k �upper
panel� and the k dependence of �u �lower panel�. The different
meanings of �u for larger and smaller k are described in the main
text.

FIG. 14. �Color online� k dependence of the fitting parameters
a2 and a0 and the static LV structure factors Su

�����k� of the LV No.
122 �upper panel� and No. 118 �lower panel� of coupled standard
maps with �=0.6. In case �=118 we assign a0=a2 for the three-
pole approximation.

FIG. 15. �Color online� Ratio a2 /a0 vs k of the LV Nos. 122,
124, and 126 of coupled standard maps with �=0.6. It is nearly
constant for k�6� /L but hold different values for various LVs.

FIG. 16. �Color online� Log-log plot of the fitting parameter a1

of coupled standard maps with �=0.6. Numerical fitting of the data
to a power-law function a1�k− yields 1.0.
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Su
�����k,�� = Su

�����k��c0
c1k

�2 + c1
2k2

+ c2
c3k

�� + �u�2 + c3
2k2

+ c2
c3k

�� − �u�2 + c3
2k2� , �14�

where ci are k-independent constants and Su
�����k ,�� is the

static LV structure factor. In particular, c1 and c3 are inde-
pendent of the LVs being used while the ratio c2 /c0 does
change with �. The spectrum, Eq. �14�, is akin to that of
density fluctuations in fluids �21�. It consists of three com-
ponents: the central peak at �=0 and two side peaks at �
= ±cuk. The two shifting side peaks correspond to the

phononlike propagating mode while the central peak repre-
sents the decaying diffusive mode. The finite width of the
side peaks implies that the propagating mode is of finite
lifetime similar to phononlike modes in fluids. The diffusive
mode corresponds to anomalous diffusion of the LVs.

Simulations for other cases with the coupling strengths
�=1.3 and 2.3 give similar results to those shown above. The
value of cu depends on the coupling strength �.

C. Effect of damping on the dynamics of HLMs

In our previous study �1�, we found that adding damping
to coupled standard maps induces the change of the �-k dis-
persion relation from ��k to ��k2. In cases of weak damp-
ing, a crossover in the dispersion relation may be observed;
i.e., the dispersion relation turns from ��k in the large-k
regime into the asymptotic form ��k2 with decreasing k. In
this section we will look at the corresponding change in the
dynamical behavior of the HLMs. For simplicity, we restrict
the discussion to �t

l=�0.
In Fig. 17 the dynamic LV structure factors Su

�����k ,�� of
coupled standard maps under damping are presented �see Eq.
�1��. Four cases with increasing damping strength are ar-
ranged together to make the change more evident. As the
damping strength increases, the general trend of variation in
Su

�����k ,�� is that the side peaks fade out gradually. Close
investigation detects that the change in the spectra begins
with those that have small wave numbers. For the case �0
=0.2 �the second panel from the top in Fig. 17�, the side
peaks in the spectra with k�6� /L already become invisible
while those in the spectra with k�10� /L are still rather
sharp. This is assumed to correspond to the previously ob-
served crossover in the �-k dispersion relation.

For the case �0=0.7, all spectra possess only the central
peak, just like the spectra for coupled circle maps �see Fig.
5�. These results show that in connection with the change in
�-k dispersion relation, the propagating HLMs in coupled
standard maps become diffusive under damping. Although
the HLMs with wavelengths comparable to the system size
become diffusive, the modes with k�2� /L are still propa-
gating if the damping is not too strong. The situation is simi-
lar to the existence of shear waves in fluids on the mesos-
copic scale �21�.

In the recent study of many-particle systems with hard-
core interaction, de Wijn and von Beijeren �12� pointed out
that there is a certain relation between the propagating HLMs

FIG. 17. �Color online� Dynamic LV structure factors
Su

�����k ,�� of coupled damped standard maps under damping. The
damping coefficient is �0=0.0, 0.2, 0.5, and 0.7 �from top to bot-
tom�, respectively. The coupling strength is �=1.3. The side peaks
in the spectra fade out gradually with increasing �0.

FIG. 18. �Color online� The fitting parameter �u vs k for the
three cases �0=0.0, 0.2, and 0.5. Fitting data to a linear function
�u=cuk gives cu=0.136, 0.161, and 0.175, respectively.
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and the imaginary eigenvalues of the fundamental matrix
governing the time evolution of the perturbations in tangent
space. One ingredient essential for such an interpretation is
the time translational invariance possessed by many-particle
systems. The absence of such a continuous symmetry in the
CML’s under consideration calls for an alternative interpre-
tation of the propagating modes observed.

To specify the changes in the spectra, we will try to fit the
spectra with the three-pole formula in Eq. �13�, as in the case
without damping. Since only the central peak is visible in the
spectra with small wave numbers, one should keep in mind
that the fitting parameters obtained for the cases with large k
are more accurate and more reliable than those for small k. In
Fig. 18, the fitting parameter �u is plotted against k for three
cases with different damping coefficients �0. All of them can
be well fitted with a linear function �u=cuk. Here, cu

=0.136, 0.161, and 0.175 for �0=0.0, 0.2, and 0.5, respec-
tively. The slight increase in the velocity cu may be the result
of the inaccurate estimations of �u. Figure 19 shows the
change in the fitting parameters ai.

We will now turn to the overdamped case with �0=0.7
�see the bottom panel of Fig. 17�. In Fig. 20, the dynamic
structure factor of LV No. 76 with k=2� /L is approximated
with a single Lorentzian curve as stated in Eq. �10�. Obvi-
ously, there is a perfect agreement between the numerical
data and the fitting curve. The lower panel of Fig. 20 shows
that the approximation works well for all cases with different
k values that has been considered.

The fitting parameter a0 and the corresponding static LV
structure factors are plotted in Fig. 21. There is a rather good
agreement between the symbols for a0 and the curves of the
spectra Su

�����k�. This implies the relation a0= �1/��Su
�����k�,

similar to the one we found for coupled circle maps.
In Fig. 22, the width a1 of the peaks in the spectra

Su
�����k ,�� is plotted against the wave number k. It increases

with k for all the cases investigated. Numerical fitting of the
data of LV No. 76 to a power-law function a1�k yields 
2.0. With decreasing � from 76, which corresponds to in-
creasing the Lyapunov exponent ���� from zero, the curves
bend up on the small-k side. Nevertheless, they tend to fol-
low the parabolic function a1�k2 for large wave numbers.
Thus, we can say that the dynamic LV structure factors of the
overdamped case with �0=0.7 take the form shown in Eq.
�11� for coupled circle maps. The same interpretation as for
coupled circle maps can be adopted here as well; i.e., the
diffusive motion of the LVs leads to the estimated Lorentzian
spectrum Su

�����k ,��.

FIG. 19. �Color online� The fitting parameters ai for the dy-
namic LV structure factors of coupled damped standard maps with
�=1.0 and 0.5.

FIG. 20. �Color online� Approximation of the spectrum
Su

�����k ,�� of LV No. 76 of the overdamped case �0=0.7. The upper
panel is the log-linear plot for the case k=2� /L, and the lower
panel is the log-log plot for four cases with k=2� /L to 8� /L. The
agreement between the numerical data and the fitting curves is per-
fect for all cases shown. The zero-value Lyapunov exponent is at
�=78.

FIG. 21. k dependence of the fitting parameter a0 and the cor-
responding static LV structure factors Su

�����k� of the LV Nos. 76,
72, and 68, respectively �from top to bottom�. The agreement be-
tween the two sets yields a0= �1/2��Su

�����k�.
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VI. VISUALIZING THE LV DYNAMICS

In the above sections, we showed that there are differ-
ences in the dynamic LV structure factors of the coupled
Hamiltonian and dissipative maps. In this section, we would
like to use particular examples to visualize the LV dynamics
of the two kinds of systems and to demonstrate the differ-
ences between them. This will also be helpful in understand-
ing the physical meaning of the peaks in the dynamic LV
structure factors.

To this aim, we set

f�z� = �z/r for 0 � z 
 r ,

�1 − z�/�1 − r� for r � z 
 r ,
� �15�

in Eqs. �1� and �2�, instead of the nonlinear function f�z�
= �1/2��sin�2�z� used above. Here, r� �0,1� is a control
parameter which can be used to tune the tangent-space dy-
namics of the coupled maps. For example, for ��0, decreas-
ing r causes the systems, Eqs. �1� and �2�, to become more
hyperbolic. As shown in Fig. 23, for the dissipative system,
Eq. �2�, with �=1.3 and r=0.2, each of the static LV struc-
ture factors is highly dominated by a Fourier component with
wave number kmax. The corresponding Lyapunov vector is
nearly a pure plane wave. With increasing r, the dominant
peaks in the static LV structure factors become broader and
the LV profile departs from the shape of a pure plane wave.
A similar scenario is observed for the Hamiltonian case, Eq.
�1�.

An animation of the time evolution of the LV No. 254 of
the model, Eq. �2�, for the piecewise linear f of Eq. �15� can
be found on the web site http://www.tu-chemnitz.de/ksnd/
hya/hlm-cml. The system size L=256, the coupling strength
�=1.3 and r=0.2.

In Fig. 24, the time evolution of the quantity
su

�����kmax , t� is presented, where su
�����k , t� is the instanta-

neous static LV structure factor defined in Eq. �7� and kmax
is the wave number of the dominant peak in the static LV
structure factor Su

�����k�. The time evolution is characterized
by the sequence of erratic events. In between the events,
su

�����kmax , t� maintains a nearly constant value L /2. As
shown in Fig. 25, which is the enlargement of the event
at t�7720, at the beginning of each event the value of

su
�����kmax , t� suddenly dips downward; then, it relaxes gradu-

ally to the constant value L /2. Several snapshots of the LV
profile U����r , t� during this event are shown in Fig. 25. Ob-
viously, the dip of su

�����kmax , t� at the beginning of the event
is triggered by the deformation of the LV profile from a pure
plane wave. The decay of the deformation corresponds to the
slow relaxation process following the sudden dip. As shown
in Fig. 25, a numerical fit of the relaxation of the quantity
su

�����kmax , t� to an exponential function works rather well,
which implies that the decay of the deformation in
U����r , t� is exponential. This is consistent with the argument
given in Sec. V A about the dynamic LV structure factors. In
other words, the diffusivelike exponential decay of the defor-

FIG. 22. �Color online� The width a1 of the peak in the spectra
Su

�����k ,�� vs k for various LVs. Numerical fitting of the data for the
case �=76 gives a1�k2. Curves for other LVs follow the same
trend for large k, although they depart from the parabolic function
a1�k2 in the small-k regime.

FIG. 23. �Color online� The upper panel shows the contour plot
of the static LV structure factors of the dissipative system, Eq. �2�,
with the nonlinear function f�z� in Eq. �15�. Here, �=1.3 and r
=0.2. The lower panel displays the static LV structure factor of LV
No. 230. The dominant peak is very sharp here, which implies that
the LV profile is rather close to a pure plane wave.

FIG. 24. �Color online� Time evolution of several quantities
characterizing the LV dynamics. The erratic dip-relaxation events
in su

�����kmax , t� are a manifestation of the diffusive motion of
U����r , t�. The phase ��kmax , t� is nearly constant during the inter-
vals between the dip-relaxation events. This implies that the LVs
are of nonpropagating nature in this system.
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mation in U����r , t� gives rise to the Lorentzian spectrum
shape of the dynamic LV structure factor.

The time evolution of the quantity ��kmax , t� is also shown
in Fig. 24. Here, ��k , t� is defined as the phase variable of
the quantity Uk

����t� given in Eq. �6�. In the cases studied in
this section, the LV profile U����r , t� comes close to a pure
plane wave most of the time. Thus, the quantity ��kmax , t� is
a suitable measure to characterize the movement of LVs. As
can be seen in Fig. 24, the phase variable ��kmax , t� remains
constant within the range of error during the long quiet in-
tervals between the dip-relaxation events in su

�����kmax , t�. It
suddenly jumps as the dips in su

�����kmax , t� take place. This
demonstrates clearly that, here, the Lyapunov vector shows
no movement apart from the irregular dip-relaxation events.
Note that it is nonpropagating in nature.

Figure 24 also shows the finite-time Lyapunov exponent
��� , t� with �=1. It is well known that Lyapunov exponents
�LEs� characterize the chaoticity of nonlinear systems in cer-
tain directions in phase space. In general, the degree of chao-
ticity of nonlinear dynamical systems fluctuates with time.
To characterize such nonuniform nature, a quantity named
finite-time or local Lyapunov exponent is introduced. It is
defined as the average expanding exponent of the trajectory
segment from t to t+�. See Ref. �24� for a rigorous definition
of this quantity. The time evolution of ��� , t� shown here is
characterized by a series of spikelike sudden jumps. Note
that the spikelike fluctuations take place simultaneously with
the dip-relaxation events in su

�����kmax , t�. This indicates an
interesting connection between them.

The spectral entropy Hs�t� defined in Eq. �9� is repre-
sented in the bottom panel of Fig. 24. The figure indicates
that the intermittency discussed in Sec. IV is a manifestation
of the observed structural changes in the LVs.

In Fig. 26, the time evolutions of quantities su
�����kmax , t�

and ��� , t� for several LVs are shown together. The connec-

tion between the changes in the two quantities is quite obvi-
ous. For instance, at t�108 there are sudden dips in
su

�����kmax , t� for LVs with �=252 and 253. Correspondingly,
there are spikelike strong fluctuations in the finite-time LE’s
with �=252 and 253 at the right moment. At t�204 and
385, the pair of LVs involved are �= �251,254� and �252,
253�, respectively. At t�726 and 837, four s are all involved
in the dip-relaxation event. These facts encourage the con-
jecture that the intermittent time evolution of the LV profile
is due to the interaction of a group of LVs.

An animation of the time evolution of LV No. 126 of the
model, Eq. �1�, can also be found on the web site http://
www.tu-chemnitz.de/ksnd/hya/hlm-cml. Here, the system
size L=128, the coupling strength �=1.3, and r=0.15.

In Fig. 27, the time evolution of the same quantities as
discussed above is presented for the Hamiltonian system, Eq.
�1�, with f�z� from Eq. �15�. Similar to the dissipative sys-
tem, Eq. �2�, the time evolution of su

�����kmax , t� is character-
ized by a series of dip-relaxation events. In connection with
such events, there are sudden jumps in the values of the
phase variable ��kmax , t� and strong spikelike fluctuations in
the finite-time Lyapunov exponents ��� , t�. As shown in Fig.
28, the dip-relaxation events here also represent the same

FIG. 25. �Color online� The upper panel shows the dip-
relaxation event in su

�����kmax , t� at t�7720. Four snapshots of the
LV profile U����r , t� during this dip-relaxation event are represented
in the lower panels. It becomes clear from the plot that the dip-
relaxation event is characterized by the sudden deformation and
slow recovering of the plane-wave LV profile.

FIG. 26. �Color online� The coherence between the dip-
relaxation events in the time evolution of su

�����kmax , t� and the
spikelike fluctuations in ��� , t� for several LVs shows that the dip-
relaxation events are caused by the interaction among LVs.

FIG. 27. �Color online� Same as Fig. 24, but for the Hamiltonian
system, Eq. �1�. Here, �=1.3 and r=0.15. The dip-relaxation events
are similar to those in Fig. 24. Note that, in contrast to the dissipa-
tive case shown in Fig. 24, the phase ��kmax , t� changes continu-
ously during the intervals between dip-relaxation events. This im-
plies that the LVs in this system are propagating. The apparent
stochastic motion of the phase variable ��kmax , t� means that the
propagating Lyapunov modes are of short lifetime.
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geometrical changes in the LV profile. This supports our con-
jecture that the central peak in the dynamic LV structure of
the Hamiltonian system has a similar physical meaning as
the peak in the dynamic LV structure of the dissipative sys-
tem.

In contrast to the dissipative case, the phase variable
��kmax , t� varies continuously during the quiet intervals be-
tween the dip-relaxation events. Such continuous changes in
the phase variable ��kmax , t� become more evident in the case
�=1.3 and r=0.1 �cf. Fig. 29�. In that case, the sudden jumps
that are due to the dip-relaxation events disappear com-
pletely for the time period shown. The phase variable
��kmax , t�, however, evolves continuously as time goes on.
The continuous variation of the phase variable implies that
the Lyapunov vectors in this system propagate along the lat-

tice space. The stochastic evolution of ��kmax , t� means that
the direction of propagation changes frequently; i.e., the
propagating modes in this case are of finite lifetime. The
propagation of the LVs gives rise to the side peaks in the
dynamic LV structure factors.

In a general extended dynamical system with continuous
symmetries, the LVs associated with near-zero LEs are of
long-wavelength structure. The LV profiles are, however,
rather far from the shape of a pure plane wave. Therefore,
the visualization of the LV dynamics as shown above be-
comes difficult. A similar mechanism as discussed earlier,
however, is expected to work in general. In other words, the
deformation and relaxation of the LV profile give rise to the
central peak in the dynamic LV structure factors. The side
peaks in the dynamic LV structure factors represent the
propagation of the LVs. As shown in Fig. 30, for the case r
=0.2 the dip-relaxation events become more frequent com-
pared to the case r=0.15 �cf. Fig. 27�. As r further increases,
the dip-relaxation events become so frequent that one can no
longer distinguish individual events. This is the general case
for a nonhyperbolic system.

VII. CONCLUSION AND DISCUSSION

In summary, we have investigated numerically the dy-
namical behavior of Lyapunov vectors in coupled map lat-
tices. We found that the dynamic LV structure factors of
coupled circle maps have a single peak at �=0, while two
sharp peaks centered at ±�u are visible in the dynamic LV
structure factors of coupled standard maps. The dynamic LV
structure factors of coupled circle maps take the form of a
single Lorentzian spectrum which is typical of a diffusive
process. This implies that the hydrodynamic Lyapunov
modes in coupled circle maps show only diffusive motion
and are nonpropagating. The spectra of coupled standard
maps can be well approximated by a superposition of three
Lorentzian peaks centered at �=0 and ±�u, respectively. The
shifting side-peaks represent the propagating hydrodynamic
Lyapunov modes while the central peak comes from the dif-
fusive motion of LVs. The difference found here supports our
conjecture that the two models belong to different universal-

FIG. 28. �Color online� The upper panel shows the enlargement
of the dip-relaxation event at t�1010. Four snapshots of the LV
profile U����r , t� during this dip-relaxation event are presented in the
lower panels. As can be clearly seen from the plot, the dip-
relaxation event resembles those in the dissipative case; i.e., they
are characterized by the sudden deformation and slow recovering of
the plane-wave LV profile.

FIG. 29. �Color online� Same as Fig. 27, but for the case �
=1.3 and r=0.1. Here, the wild dip-relaxation events disappear
completely, which causes the continuous variation of the phase vari-
able ��kmax , t� to become more evident. Note that the fluctuations of
the finite-time Lyapunov exponents are very small compared to the
differences between neighboring Lyapunov exponents. This is the
reason why the dip-relaxation events disappear here.

FIG. 30. Same as Fig. 27, but for the case �=1.3 and r=0.2.
Here, the dip-relaxation events become more frequent in compari-
son with the case �=1.3 and r=0.15. Note that the sudden jump in
the phase variable ��kmax , t� and the spikelike fluctuations in ��� , t�
also take place more frequently.
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ity classes. We have also studied the effect of damping added
to coupled standard maps and found that the side peaks in
dynamic LV structure factors fade out gradually with in-
creasing damping strength. This is connected with the cross-
over in the �-k dispersion relation discovered in our previous
study �1�.

In both models, the peaks in the spectra �either the central
peaks or the side peaks� are of finite width. This means that
the modes represented by these peaks have finite lifetimes.
The intermittency discussed in Sec. IV is an indication of the
finite lifetime of the modes. It is, however, difficult to extract
a precise time scale from the intermittent time series and to
compare it with the time scale derived from the peak width.
The reason for this difficulty lies in the fact that the intermit-
tent time evolution of each Lyapunov vector is the combined
effect of many Fourier components with different wave num-
bers, each of which has its own lifetime.

We have shown that there are differences between the
HLMs of coupled standard maps and those of coupled circle
maps, both in the spatial structure and in the dynamical be-
havior. Further investigations of numerous systems, includ-
ing the dynamical XY model and the Kuramoto-Sivashinsky
equation, support our conjecture that there are two classes of
systems with difference in the nature of HLMs. More details
of this will be presented elsewhere.

In many-particle systems, three different kinds of HLMs
have been proposed �14�. The transverse modes are station-
ary. The longitudinal and P modes are coupled together, and
both are propagating. In a two-dimensional system, all three
modes can be present. In a one-dimensional system, how-
ever, the transverse modes are not permitted. In this case, the
nonpropagating HLMs found in the one-dimensional lattice

of coupled circle maps are unexpected, since only the propa-
gating longitudinal modes, and possibly P modes for systems
with continuous-time translational invariance, are expected
in a one-dimensional system. The existence of propagating
HLMs in the one-dimensional lattice of coupled standard
maps calls for an alternative explanation to that of the many-
particle case. The reason is that, due to the discrete time
evolutions of the CMLs the P modes are absent here. Thus,
the LP pairs formed by the longitudinal and P modes can not
exist here �14�. The seemingly strange behavior of the HLMs
found in this study may be due to the following difference
between many-particle systems and coupled map lattices.
The elements of coupled map lattices are embedded in a
discrete lattice space �the coordinate space� while the time
evolutions happen in a continuous state space; i.e., the coor-
dinate and state space are different. In many-particle sys-
tems, however, the movement of particles is in the same
space where they are located. Further work is needed to
clarify this point.

For both systems investigated, the position and width of
the peaks in dynamic LV structure factors show only a weak
dependence on the LVs. This suggests the interpretation that
the Fourier modes indexed by wave number have weakly
coupled dynamics and are the fundamental building blocks
of the LV dynamics. The interaction of these modes leads to
the diffusive motion of the HLMs and the intermittency in
the LV time evolutions.
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